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Summary. In this paper, we present new general analytical formulas for matrix 
elements of the free-particle Green's function over arbitrary Cartesian Gaussians 
and explicit formulas for Green's function matrix elements over s, p, d and f Gaus- 
sians. One-center matrix elements were obtained by direct integration and two- 
center matrix elements by differentiation of the integral formula for s Gaussians 
with respect to the position vectors of p, d, and f Gaussians. We also present 
a representative set of numerical values of the matrix elements. 
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1 Introduction 

Use of Gaussian basis sets in electron scattering calculations requires development 
of procedures for analytical evaluation of the free-particle Green's function matrix 
elements over Cartesian Gaussian functions. Ostlund derived formulas for the 
s-type [1] and p-type 112] Gaussians by direct integration. Levin and coworkers [3] 
derived formulas for d- and f-type Gaussians by means of the partial-wave 
expansion of the plane-wave function. The purpose of this paper is to show that 
simple and compact explicit formulas up to f functions may be obtained without 
partial-wave expansion. In their general form, the formulas may be applied to 9 and 
higher Cartesian Gaussians. In this paper, we also report corrections for several 
misprints in the published values of matrix elements [-3-], and list some additional 
data which may serve as standards for debugging new computer codes. 

2 Theory 

As is usual we assume the free-particle Green's function as 

1 e ik°lr- r'l 
'" k o )  = G + (r, r ,  

4 ~  [r - r'[ 
(1) 

* On leave from Heyrovsk~, Institute 
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and the normalized Cartesian Gaussian functions as 
A [~l=.) = N,,.,.(x -- Ax)t(y - Ay)m(z -- Az)"e-~(r-A)2. (2) 

Since the values of normalization constants for different types of d and f functions 
are different, we will derive the formulas for unnormalized Gaussian functions. 
Hence, we use the following formula for the Fourier transform of a Gaussian 
function 

= _2 , - . , +  m-}-n e i k ' A e - k 2 / 4 " H , ( 2 ~ ) H , , ( 2 ~ ) H , ( 2 - 2 ~ )  

(3) 

where the plane-wave function Ik) is also assumed to be unnormalized 

[k> = e ik'r. (4) 

For the energy E = k~/2 the matrix element of the Green's function is given by 

@,,.nlk)A (klfl~.m,.,) dk. (5) a 1 lim ['l (%..]ag(E)lfl~,,.,,,,> = ~-~3 _~o o kg - k  2 + i e  

We treat the one-center and two-center matrix elements separately because the 
former are derived by direct integration whereas the latter are derived by successive 
differentiation of the integral formula for s Gaussians with respect to the position 
vectors of p, d, and f Gaussians. 

2.1 One-center matrix elements 

By substituting for the Fourier transforms, the one-center matrix elements may be 
expressed as 

8(-- 1)r +rn'+n" i t+m+n+r +m'+n" 
(Tt~.IG~(E)IflAm,.,) = (2x/c~)t+rn+n+3(2x//-fi)r+m,+n,+3 [lmnrm'n' (6) 

where the integrals I,m.v,.,., are defined as 

Ilmnl,m, n, 

H, H " \ 2 ~ / ~ ]  \2~/~.} \2x/f l  ] r 
lim ! e -°=k~ dk 
~-o J kZo- k 2 +ie 

and 

(7) 

1 1 
aZ = ~ + 4--fi" (8) 

Evaluation of these integrals through f Gaussians leads to the following formula: 

4 
A lmnl'rn' n' Itm.v,.'.' = ~ ~2j Jzj. (9) 

j = l  
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Table 1. Parameters A ~m"rm'"' for one-center matrix elements through f Gaussians. Parameters Pj are M 
summarized in Table 2. The sp, pd, sf  and df  matrix elements are identically equal to zero by symmetry 

Matrix element A 2 A4 A6 As 

ss 4re 0 0 
4~ 

pp 0 3 ~ , / ~  P2 0 

4~ 
sd -- 8rtP1 ~-~ P2 0 

dd 16~zPt 8'/~(0C + fl) P2 4r~ 
3aft 5-~ Pa 

8n 4n 
p f  0 - - ~ f l P 2  5 ~ P 3  

48x 24rc(a + fl) o ,/vP  

0 

47z 
- -  P3  - - P 4  

Table 2. Parameters P~ through f Gaussians for one-center matrix elements 

Matrix element a P~ P2 P3 P4 

x -x  0 1 0 0 
s - x x  1 1 0 0 
x x - x x  1 1 1 0 
x x - y y  1 1 1/3 0 
x y - x y  0 0 1/3 0 
x - x x x  0 1 1 0 
x - x y y  0 1/3 1/3 0 
x x x - x x x  0 1 1 1 
x x x - x y y  0 1/3 1/3 1/5 
x x y - x x y  0 1/9 1/9 1/5 
xxy-yzz  0 1/9 1/9 1/15 
xyz -xyz  0 0 0 1/15 

a Only those types of matrix elements are listed for which the Pj parameters are 
nonzero 

Almnl'mPrt' In  this s u m m a t i o n  Jz j  are  in tegra ls  eva lua t ed  in  A p p e n d i x  A a n d  -~2j are  
p a r a m e t e r s  wh ich  are  s u m m a r i z e d  in  Tab les  1 a n d  2. 

T h e  in tegra l s  Itm,rm', '  c an  also be expressed in  a genera l  form if we realize tha t  
a p r o d u c t  of H e r m i t e  p o l y n o m i a l s  c an  a lways  be wr i t t en  as a power  series 

l+ l '  re+m" n+n '  

= 2 2 ~_, Q L u N ( k x ) L ( k , ) M ( k z )  ~ (10) 
L = I  M = I  N = I  
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where constants QLMU (e, fl) can be easily obtained. Using this expression, Eq. (7) 
can be rewritten as 

l+l' m+m" n+n' 

I,m,,,,,,,, = 2 ~ Z QLMuKLMN. (11) 
L = I  M = I  N = I  

Here KLg N are integrals given by the formula 

lim [,~o (kx)L(kr)U(kz)N e -a~k~ dk KLMN (12) 
,:-~OJo k o : - k  2 + i e  

which can be evaluated as shown in Appendix B. 

2.2 Two-center matrix elements 

For the two-center integrals over Gaussians with nonzero l, m, n, l', m', n' we 
employed a method which has been used in the electronic structure theory since the 
early days of ab initio calculations [8]. This method consists of substituting the 
following expressions for the unnormalized p, d, and f functions 

1 0 
IP~) = - - - -  e-~rJ, 

2c~ 0Az 

1 02 1 
la~.) = - -  e - ~ r J  + _--- e - ~ d ,  

4o~ z OA~OA, 6~" 2~ 

1 0 3 1 
- -  - -  e - ~ r ~  

[ f ~ )  = 8~3 ~A~OA~OA~ e-~r~ + 6~. 4~ 2 OAr 

1 a 1 
- -  - -  e - ~ r J  + 6r,~ _ _  _ _  e - ~ r J .  ( 1 3 )  

q- ~;~v 4C~2 OA u 40~ 20Aa 

2 = ir _ A 1 2  and Greek subscripts for x, y, z. To obtain In these formulas we use r A 
a formula for two-center Green's function matrix elements we need to express these 
Gaussian functions in a general operator form. For this purpose we define the 
operator as 

~l+m+n 
A,A, -- (14) 

- -  l m n "  OAx~3A r OAz 

Then the p, d, and f functions may be rewritten as 

1 a 
I P ~ ) = ~ A t ~ , I s ) ,  l + m + n= l, 

V1Aa Idx,,)--i_~-~ ~.,.+,~,,~Aooo Is>, l + m + n = 2 ,  

F 1  1 3 A 1 O 
Ifz,~) =/L-ff~--5~ 3 A Arm. + 6z, 4e2 oAAooo + 6~4~---50a--~uAoooA 

I O A A  1 +6~,~4~ 2~ AO0 IS), l + m + n = 3 ,  (15) 
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where 

0 0 AA 0 AA 
- -  = = Aoo 1 . (16) A A ° l O ~  ~ z  ooo  A OAx AOOo = AAoo,-~y ooo A 

Formulas for g and higher functions may be obtained by means of the following 
recursive expression: 

1 0 1 
= ~,m.) + ~-~ [~z-1 . . . .  ) .  (17) [ a+l,m,, ) 2~aAxl A 

Since the operators A~A. (Eq. 14) do not depend on r and r', respectively, the order 
of differentiation with respect to Cartesian Gaussian coordinates and integration 
over r and r', respectively, can be interchanged. Calculation of Green's function 
matrix elements then reduces to the evaluation of expressions A~.,. A~=,., G**, where 
the Gs$ matrix element is defined as 

( ~ l  Go + I / ~ )  = G~ ,  (18) 

and its evaluation is described in Appendix C. As an example we present the matrix 
element for fx~ and f~z~ functions 

A @3oo] G + n [floo3) = G~ + G 2 -[- G 3 "k- G4, (19) 

where G1, Gz, G3, and G4 becomes 

A B 
Ga A 3 ° ° A ° ° 3  Gss, 

64~3fl  3 

A B 
G 3 - 3Al°°A°°3 Gs~, 

32~2fl 3 

Since 

A B 
3A3ooAoo1 

G2 --- 32~3j~2 G~s, 

A B 
9AIooAool 

G 4 = 16~2fl2 G~$. (20) 

A B g 1 ~t'+m'+n'AA AA Gss (21) AlmnAl ,m ,  n, Gss = ~,-- j ~tmn~l 'm'n" 

we may drop the superscripts A and B and assume only the differentiation with 
respect to A, 

A z~. -= Arm,. (22) 

Differentiation of G~s gives 

K 

At,,,,At,,,,,,,,G~s= ~,, -sPr~s)~, (23) 
Y = l  

where 

K = l + m + n + l '  + m '  + n ' ,  (24) 

and G~ s) is the j th derivative of Gss with respect to the distance C = AB, 

G(j) = ~s Gss 
OC s . (25) 
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Evaluation of G~ s) terms is described in Appendix C. For each J and K, the 
coefficients Ps x in Eq. (23) may be expressed as 

- 1) Rj, i~(Cz~, Cz~, ..., Ca~), I = K/2 for K even 
i = 0  

I = (K - 1)/2 for K odd. (26) 

By Ca,, Ca=,..., Ca~ we denote derivatives of C with respect to coordinates 
Az,, Az=, ..., Aa,: 

Ca = OC/OAa. (27) 

The symbol ~i(Ca,, Cz~,..., Ca~) means all permutations of Ca,, Ca=,..., Ca~ with 
respect to indices 21,22, ..., 2K with the first i pairs Ca, Ca=, Ca~ Ca,,..., Ca .... Ca=, 
replaced by Kronecker delta functions. For example, for K = 4 we have 

and for K = 5 

,~o (Ca,, Ca=, Ca,, Ca,) = Ca, Ca= Ca, Ca,. 

,a2~(Ca,, C<, Ca,, Ca,) = ~(aa,a=, Ca.`, Ca,) 

~2(Ca,,  Ca=, Ca,, Ca,) = ~(aala=, aa.`a,) (28) 

~o(Ca,,  Ca=, Ca.,, Ca,, Ca,) = Ca, Ca=Ca, Ca, Ca, 

• ~1 (Ca,, Ca=, Ca3, Ca,, Ca,) = ,°2(6aa=, Ca,, Ca,, Ca.,) 

~2(Cz,,  Ca=, Ca,, Ca,, Ca,) = ~(6~,a=, 5a.`a,, Ca,). (29) 

In Eqs. (28) and (29) ~ stands for permutations of indices 2~, 22,. . . ,  2K. For 
example, 

~(6a,a= Ca.`Cx,) = 6aa= Ca, Ca, + 5a,a.` Ca= Ca, + 5a,a, Ca~ Ca.̀  

+ 6a2z.`CalCa4 + 6a2z, Ca,Ca.` + ba3a, Ca, Ca=. (30) 

The general formulas for RsK~ coefficients are the following: 

Rs~i - 1 K-s-'I(K2i)j~=, - ( ~ ) 1  f°r J + i < K '  
( K - J - i ) !  .= 2 i - 1  < K, 

(31) 
RsK.i=l f o r J + i = K ,  2 i - -1  < K .  

If the indices J and i are outside the range given in Eq. (31), then Rf.~ = 0. The 
values for Rj  ~, 1 coefficients needed for Green's function matrix elements through 
g Gaussians are listed in Table 3. The coefficients RsKa for i > 1 may be obtained 
also by means of the recursive formula 

RK+ 1 K J + i < K ,  (32) 
j ,~+l=Rs,~ for 2 i<K.  

The explicit expressions for P~ coefficients needed for Green's function matrix 
elements through d Gaussians are presented in Table 4. 
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Table 3. Coefficients Rj. o for K ~< 8 and J ~< K 
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K R K R K R r K ~ r ~ R K 
1.o 2.o a.o R4.o Rs.o R6.o RT.o 8.o 

1 1 
2 1 1 
3 3 3 1 
4 15 15 6 
5 105 105 45 
6 945 945 420 
7 10395 10395 4725 
8 135135 135 135 62370 

1 
10 1 

105 15 1 
1260 210 21 1 

17325 3150 378 28 1 

3 Results and discussion 

We tested the new formulas for Green's function matrix elements against the 
numerical data published by Levin and coworkers [3]. We also tested them by 
calculations in which we integrated the angular part of Eq. (5) analytically and 
the resulting expression was integrated numerically over k. Having calculated 
these integrals in two different ways, we feel confident that the data by Levin 
et al. [3] contains a few misprints (wrong signs of some integrals). We consider it 
expedient to present the corrected values, because they belong to the only data 
set we have found in the literature that was suitable for checking our results. 
The matrix elements 3-9, 3-8, and 1-6 from Table IV of Ref. [3] should 
read 0.334011 x 10 -2 + i 0.52021 x 10 - 6 ,  -0.182042 - i  0.19020x 10 -1, and 
-0.255808 × 10 -6 - i 0.73535 x 10 -9, and the position vector of center 9 should 

be (0,0, - R )  for R = --1.034 a.u. 
The formulas we derived are about as complex as those by Levin and 

coworkers [3]. While they listed explicit formulas only for axially symmetric 
molecules, we present explicit formulas for a general polyatomic molecule that may 
be used directly for computer coding. For the purpose of checking new computer 
codes we present in Tables 5 and 6 a representative set of numerical matrix 
elements for both the one-center and two-center integrals for a set of s, p, d, and 
f-type Gaussian functions. 

Appendix 

A. Evaluation o f  integrals Jzj  

In this Appendix we present formulas for integrals of the following type 

f o  ~ k2Je -a2k~ 
J2j = ~.~olim k o ~ - ~ - ~  i ~ dk. (A.1) 

Fo r j  = 0 the integral may be evaluated [4] by means of the complex error function 
[5] using the algorithm of Gautschi [6], 

7~ 
Jo = - - - -  iw (ako). (A.2) 

2ko 
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v/  

v /  

a ,  

, q  

b 
a ,  

+ 

+ 

+ 

k) 

rd '~ 

eq 

~ ee5 

r d ~  

÷ 

oo i I r ) "  

~ . , ~  ~ k )  ~ ~ ~ r ') 

+ 

~ ~,1 ' ~ ,  ~,~ ,,, ~ "  ~ i J r~ k9 k g , ~ k )  ' J  
r \  ~ • r~  '~ 'ek.) ~ I ~ r ~ r ~ " ~  ~r 'D~ ~ '  

i 
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Table 5. Two sets of Gaussian functions used for numerical testing of Green's function 
matrix elements a, b 
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Type of Gaussian Set A Set B 

Number Exponent Number Exponent 

s 1A 5.0 1B 4.5 
Px 2A 3.0 2B 2.5 
dx~ 3A 1.5 3B 1.0 
dxy 4A 1.5 4B 1.0 
J~x 5A 1.0 5B 0.5 
J~y 6A 1.0 6B 0.5 
• [;~r -" 7A 1.0 7B 0.5 

a Gaussians of the set A are centered at ( --0.2, --0.4, -0.1) 
(1.0, 0.6, 1.6) a.u. 
bk = 0.85215 a.u. 

a.u. and those of the set B at 

U s i n g  a d e c o m p o s i t i o n ,  

[Yo 1 k2J (k°2 + ie)J k2(~-~-l~(k~ + is) ~ j / >  1, 
k 2 - k 2 + ie = ko 2 - k 2 + ie 

a genera l  f o r m u l a  for in tegra l s  J2j  

' ~  l- 2 ( j -m+ 1) r q J ~  = ko~SJo - ~o - 2 ~ j ,  J />  1, 

can  be easi ly de r ived  in  which  I2~ are  G a u s s i a n - t y p e  in tegrals :  

fo  ~ 12m - l r ! !  I 2 m =  kZ"e-a2k2dk=v/ -~- - ; i -~aZ-~i ,  rn>~O. 

(A.3) 

(A.4) 

(A.5) 

B. Evaluation o f  integrals KLM N 

T h e  in t eg ra l  KLM N can  be wr i t t en  in  the  form 

KLMN --= RLM TLMN JL + M + N + 2, 

where  

(n.1) 

RLM = _ (COS q~)L (sin q~)U dq), (B.2) 

TLM N " ~ -  (sin 0) L+M+ 1 (cos 0) N dO, (B.3) 

a n d  JL+M+N+2 is e v a l u a t e d  in  A p p e n d i x  A for L + M + N + 2 even.  In tegra l s  
(B.2) a n d  (B.3) m a y  be e v a l u a t e d  by  recurs ive  fo rmu la s  (cf. p a r a g r a p h  2 .51-2.52 in 
[7]).  F o r  L + M + N + 2 o d d  the  in teg ra l  KLM N is zero because  the  p r o d u c t  
RLM" TLMN has  a zero value.  
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Table 6. N um er i ca l  values  of  Green's function matrix elements for Gaussians listed in Table 5 

Gaussians One-center matrix elements Gaussians Two-center matrix elements 

1 A - I A  - 0 . 1 7 9 9 8 D  + 00 - 0 . 9 5 7 5 3 D  - 01 1A-1B 0.18798D - 01 - 0 . 4 4 8 9 4 D  - 01 
1A-2A 0.00000D + 00 0.00000D + 00 1A-2B 0.14890D - 01 0.17542D - 01 
1A-3A - 0 . 1 2 0 0 6 D  + 00 - 0 . 2 6 0 7 3 D  + 00 1A-3B 0.57904D - 01 - -0 .12092D + 00 
1A-4A 0.00000D + 00 0.00000D + 00 1A-4B - -0 .29636D -- 01 - 0 . 8 1 4 4 6 D  - 02 
1A-5A 0.00000D + 00 0.00000D + 00 1A-5B 0.53631D -- 01 0.12827D + 00 
1A-6A 0.00000D + 00 0.00000D + 00 1A-6B 0.52813D - 01 0.81328D -- 01 
1A-7A 0.00000D + 00 0.00000D + 00 1A-7B 0.71775D - 01 0.60877D -- 02 
2A-2A - 0 . 1 4 5 3 1 D  + 00 - 0 . 1 8 2 3 2 D  -- 01 2A-2B 0.89301D -- 03 - 0 . 9 2 1 8 4 D  -- 02 
2A-3A 0.00000D + 00 0.00000D + 00 2A-3B - 0 . 9 7 0 4 5 D  -- 02 - 0 . 3 6 1 6 4 D  -- 01 
2A-4A 0.00000D + 00 0.00000D + 00 2A-4B 0.19666D - 02 0.47151D - 02 
2A-5A - 0 . 1 4 7 6 9 D  + 00 - 0 . 1 3 5 0 1 D  + 00 2A-5B - 0 . 1 2 9 1 9 D  - 01 - 0 . 6 8 0 1 1 D  - 01 
2A-6A 0.00000D + 00 0.00000D + 00 2A-6B - 0 . 1 3 3 8 5 D  - 02 0.10500D - 01 
2A-7A 0.00000D + 00 0.00000D + 00 2A-7B - 0 . 1 1 6 6 3 D  - 01 - 0 . 3 6 8 6 0 D  - 02 
3A-3A - 0 . 2 6 9 8 1 D  + 00 - 0 . 6 3 3 3 8 D  + 00 3A-3B 0.17096D + 00 - -0 .29186D + 00 
3A-4A 0.00000D + 00 0.00000D + 00 3A-4B - -0 .42973D -- 01 - -0 .19049D -- 01 
3A-5A 0.00000D + 00 0.00000D + 00 3A-5B 0.66185D - 01 0.28483D + 00 
3A-6A 0.00000D + 00 0.00000D + 00 3A-6B 0.98382D -- 01 0.20489D + 00 
3A-7A 0.00000D + 00 0.00000D + 00 3A-7B 0.95085D - 01 0 . t4637D - 01 
4A-4A - -0 .19601D + 00 - -0 .13645D --  01 4A-4B - -0 .61800D - 02 - -0 .76198D -- 02 
4A 5A 0.00000D + 00 0.00000D + 00 4A-5B - 0 . 3 4 5 5 5 D  -- 01 - 0 . 2 3 8 2 4 D  - 01 
4A-6A 0.00000D + 00 0.00000D + 00 4A-6B - 0 . 1 8 2 1 5 D  - 02 - 0 . 1 6 8 3 2 D  - 01 
4A-7A 0.00000D + 00 0.00000D + 00 4A-7B 0.15837D -- 01 0.61563D - 02 
5A-5A - 0 . 6 0 9 8 9 D  + 00 - 0 . 6 8 0 2 5 D  + 00 5A-5B - 0 . 1 5 2 8 3 D  - 01 - 0 . 3 4 2 0 6 D  + 00 
5A-6A 0.00000D + 00 0.00000D + 00 5A-6B 0.24617D - 01 0.54280D - 01 
5A-7A 0.00000D + 00 0.00000D + 00 5A-7B - 0 . 7 7 1 5 2 D  - 01 - 0 . 1 9 2 0 4 D  - 01 
6A-6A - 0 . 4 3 5 0 5 D  + 00 - 0 . 3 8 2 6 9 D  + 00 6A-6B - 0 . 2 4 5 3 3 D  - 01 - 0 . 2 1 1 4 1 D  + 00 
6A-7A 0.00000D + 00 0.00000D + 00 6A-7B - 0 . 5 0 7 0 0 D  - 01 - 0 . 1 6 3 0 8 D  - 01 
7A-7A - 0 . 2 1 6 5 0 D  + 00 - 0 . 1 0 7 4 7 D  - 01 7A-7B - 0 . 1 9 9 9 0 D  - 02 - 0 . 5 1 6 9 4 D  - 02 

(7.(J) C. Evaluation of v~s terms 

Here, we introduce the following three auxiliary functions: 

7C 2 
f{°)(C) = 8C(~fl)3/~ exp (-C2/4a2) ,  (C.1) 

W ~ ) ( C ) = w  ako +~a  + W a k o - ~ a  " (C.2) 

W(°._)(C)= w ako +~a  - w  a k o - 2 a j  (C.3) 

where a is defined by Eq. (8). The fundamental integral for two s-type Gaussian is 
then obtained [1] as 

A + = G(O) (as IGo lfl~) = G,s ~,s =f(°)(C)W~)(C). (C.4) 

The derivatives of this integral with respect to C are obtained from the general 
formula 

q=O 
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where  f (J-q)(c)  and  W~)(C) are  der ivat ives  of ft°)(C) and W(__°)(C) with respect  to 
C, respectively.  The  first der ivat ives  of f W + ,  and W_ are  given by the fol lowing 
expressions:  

where  

fro(C) = - f(°)(C) Fc°)(C), 

C 
W~)(C) = ~ W¢+°)(C) - iko W~)(C) ,  

C 
W~)(C) = ~ W~)(C) - iko W~>(C) - - -  

(C.6) 

(C.7) 

2 a,fi'  (c.8) 

1 C 
F(°)(C) = ~ + 2a---- 2 . (C.9) 

The  higher  der ivat ives  for n 1> 2 are  ob ta ined  f rom the recursive expressions 

f{")(C) = - ~ n 1 f~,_q_l)(C)F(q)(c) ' (C.10) 
q=O 

@ C W~__I)(C), (C.11) W~)(C) = (n -- 1) W ~ - 2 ) ( C )  - - i k o  W ~ - 1 ) ( C )  + ~ a  2 

C (~- 
W~)(C) = (n - 1 ) ~ a  2 W ~ - 2 ) ( C )  - i k o  W ~ - 1 ) ( C )  "-]- ~ a  2 W_ 1)(C), (C.12) 

where  

and  

1 1 
F r o ( C ) -  C2 + 2a---- 5, (C.13) 

F~")(C) = ( -  1)"n! C -("+ 1) (C.14) 
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